
Week 4 - Monday

 What did we talk about last time?
 Loop errors
 System programming

From:
https://xkcd.com/844/

https://xkcd.com/844/

type name(arguments)
{

statements
}

 You don't have to specify a return type
 But you should
 intwill be assumed if you don't

 If you start calling a function before it has been defined, it will
assume it has return type int and won't bother checking its
parameters

 Because the C language is older, its compiler processes source
code in a simpler way

 It does no reasonable typechecking if a function is called
before it's defined

 To have appropriate typechecking for functions, create a
prototype for it

 Prototypes are like declarations for functions
 They usually come in a block at the top of your source file

 Parameter names in the
prototype are optional (and
don't have to match)

 Both of the following work:
int root(int);
int root(int blah);

 You can also declare a prototype
locally (inside a function), but
there isn't a good reason to do
so

#include <stdio.h>

int root (int value); // Integer square root

int main()
{

int output = root(19);
printf("Value: %d\n", output);
return 0;

}

int root (int value)
{

int i = 0;
while (i*i <= value)

i++;
return i – 1;

}

 If your function takes nothing, you should put void in the
argument list of the prototype

 Otherwise, type checking is turned off for the arguments

double stuff();

int main()
{
double output =
stuff(6.4, "bang"); // Legal
return 0;

}

double stuff(void);

int main()
{
double output =
stuff(6.4, "bang"); // Error
return 0;

}

 C does not force you to return a value in all cases
 The compiler may warn you, but it isn't an error

 Your function can "fall off the end"
 Sometimes it works, other times you get garbage

int sum(int a, int b)
{

int result = a + b;
return result;

}

int sum(int a, int b)
{

int result = a + b;
}

 C allows terrible things:
 Functions without a return type
 Situations where nothing gets returned
 Uninitialized variables getting used

 You can get warnings about these things and more by turning
on all warnings in gcc with the -Wall flag:

 Warnings won't stop your program from compiling, but you
can investigate why they're happening

> gcc -Wall program.c -o program

 Let's write a function that:
 Takes an unsigned integer as a parameter
 Returns the location of the highest 1 bit in the integer (0-31) or -1 if the

integer is 0
Parameter Return Value

0 -1

2 1

3 1

2000 10

4294967295 31

 Let's update the function from the lab so that it can read a
double value

// Original function
int readInt()
{

int c = 0;
int i = 0;
while ((c = getchar()) != EOF && c != '\n')
{

if (c >= '0' && c <= '9')
i = i * 10 + (c - '0');

}
return i;

}

 Write a function that checks whether an integer is a palindrome
 141 and 666 are palindromes
 123 is not a palindrome
 Since you don't know how to convert an int to a string, that

approach isn't available
 Hint:
 Remove each 1's digit from the number and add it to another number,

multiplying that number by 10 as you go
 If and only if the original was a palindrome, the new number will be equal

to it

 Recursion
 Variable scope

 Keep reading K&R chapter 4
 Keep working on Project 2
 Due by midnight on Friday

	COMP 2400
	Last time
	Questions?
	Project 2
	Slide Number 5
	Functions
	Anatomy of a function definition
	Differences from Java methods
	Prototypes
	Prototype example
	Insanity
	Return values
	Self defense
	Programming practice
	More programming practice
	More programming practice
	Upcoming
	Next time…
	Reminders

