
Week 4 - Monday

 What did we talk about last time?
 Loop errors
 System programming

From:
https://xkcd.com/844/

https://xkcd.com/844/

type name(arguments)
{

statements
}

 You don't have to specify a return type
 But you should
 intwill be assumed if you don't

 If you start calling a function before it has been defined, it will
assume it has return type int and won't bother checking its
parameters

 Because the C language is older, its compiler processes source
code in a simpler way

 It does no reasonable typechecking if a function is called
before it's defined

 To have appropriate typechecking for functions, create a
prototype for it

 Prototypes are like declarations for functions
 They usually come in a block at the top of your source file

 Parameter names in the
prototype are optional (and
don't have to match)

 Both of the following work:
int root(int);
int root(int blah);

 You can also declare a prototype
locally (inside a function), but
there isn't a good reason to do
so

#include <stdio.h>

int root (int value); // Integer square root

int main()
{

int output = root(19);
printf("Value: %d\n", output);
return 0;

}

int root (int value)
{

int i = 0;
while (i*i <= value)

i++;
return i – 1;

}

 If your function takes nothing, you should put void in the
argument list of the prototype

 Otherwise, type checking is turned off for the arguments

double stuff();

int main()
{
double output =
stuff(6.4, "bang"); // Legal
return 0;

}

double stuff(void);

int main()
{
double output =
stuff(6.4, "bang"); // Error
return 0;

}

 C does not force you to return a value in all cases
 The compiler may warn you, but it isn't an error

 Your function can "fall off the end"
 Sometimes it works, other times you get garbage

int sum(int a, int b)
{

int result = a + b;
return result;

}

int sum(int a, int b)
{

int result = a + b;
}

 C allows terrible things:
 Functions without a return type
 Situations where nothing gets returned
 Uninitialized variables getting used

 You can get warnings about these things and more by turning
on all warnings in gcc with the -Wall flag:

 Warnings won't stop your program from compiling, but you
can investigate why they're happening

> gcc -Wall program.c -o program

 Let's write a function that:
 Takes an unsigned integer as a parameter
 Returns the location of the highest 1 bit in the integer (0-31) or -1 if the

integer is 0
Parameter Return Value

0 -1

2 1

3 1

2000 10

4294967295 31

 Let's update the function from the lab so that it can read a
double value

// Original function
int readInt()
{

int c = 0;
int i = 0;
while ((c = getchar()) != EOF && c != '\n')
{

if (c >= '0' && c <= '9')
i = i * 10 + (c - '0');

}
return i;

}

 Write a function that checks whether an integer is a palindrome
 141 and 666 are palindromes
 123 is not a palindrome
 Since you don't know how to convert an int to a string, that

approach isn't available
 Hint:
 Remove each 1's digit from the number and add it to another number,

multiplying that number by 10 as you go
 If and only if the original was a palindrome, the new number will be equal

to it

 Recursion
 Variable scope

 Keep reading K&R chapter 4
 Keep working on Project 2
 Due by midnight on Friday

	COMP 2400
	Last time
	Questions?
	Project 2
	Slide Number 5
	Functions
	Anatomy of a function definition
	Differences from Java methods
	Prototypes
	Prototype example
	Insanity
	Return values
	Self defense
	Programming practice
	More programming practice
	More programming practice
	Upcoming
	Next time…
	Reminders

